Template Matching dalam Otomatisasi Penghitung Sel Keping Darah Berbasis Image Processing untuk Deteksi Dini Derajat Penyakit Demam Berdarah

Amelia Yolanda -, Deddy Prayama -, Aulia Ramadhani -

Abstract


One of the diseases that can be detected through blood tests is Dengue Hemorrhagic Fever (DHF). The number of platelets are one of the guidelines used by doctors diagnosing DHF. Actually, platelets can be calculated manually, but it will be very difficult if the platelets are counted quite a lot. So, we need a technology that can calculate the number of platelets quickly and automatized to get more accurate results.  

The automatic systems built by using the template matching method with  image processing include HSL Segmentation with Luminance type and Reverse Color Manipulation. After building the system, the system will automatically look for objects that match the template in the sample image and then give the marking and calculate it.

The overall system testing results are the number of platelets which are then classified manually at what degree of DHF.


Keywords


DHF, Platelets , Thrombocytopenia, Template Matching, Blood Cells

Full Text:

PDF

References


Hartadi Diaz, Sumardi, Isnanto Rizal, R, 2004,Simulasi Penghitung Jumlah Sel Darah Merah, Tugas Akhir , Jurusan Teknik Elektro UNDIP.

Hifzi Al, 2008, Simulasi Perhitungan Jumlah Sel Pembentukan Darah Menggunakan Teknik Segmentasi Amplitudo, Tugas Akhir Program Studi Teknik Telekomunikasi, Universitas Andalas, Padang.

Munir Rinaldi, 2006, Jurnal, Aplikasi Image Thresholding untuk segmentasi objek, Seminar, SNAPTI – ISSN: 1907-5022, Yogyakarta.

Munir Rinaldi, 2004. Pengolahan Citra Digital dengan Pendekatan Algoritmik. Informatika Bandung.

Sugianto, Soegeng, dkk, 2010, Uji Klinik Multisenter Sirup Ekstrak Daun Jambu biji pada Penderita Demam Berdarah Dengue, Medicinus Vol 23, No 1 Edition March-May 2010, ISSN 1979-391X.

Y. Amelia, K. Rahmadi 2015, Jurnal, Penentuan Klasifikasi Tingkat Stadium Demam Bersarah Dengue (Dbd) Berdasarkan Jumlah Sel Darah Putih Berbasis Image Processing. Vol 10, No. 2, Oktober 2015. ISSN : 1858-3709

R. Adollah, M.Y. Mashor, N.F. Mohd Nasir, H. Rosline, H. Mahsin, H. Adilah, 2008, Blood Cell Image Srgmentation: A. Review, Biomed, Proceedings 21, pp.141-144, 2008

http://www.google.co.id/e-smartschool.html. Fungsi darah. Diakses tanggal 24 Januari 2013

http://www.hematologyatlas.com/seq32.htm diakses tanggal 24 Januari 2014

Pratt, William K. 2001. Digital Image Processing, 3rd Ed. New York. John Wiley & Sons.




DOI: http://dx.doi.org/10.30630/jipr.14.1.109

Refbacks

  • There are currently no refbacks.