DESAIN ANTENA MIKROSTRIP 3.5 GHZ UNTUK APLIKASI 5G MENGGUNAKAN METODE COMPLEMENTARY RHOMBUS RESONATOR UNTUK MENINGKATKAN BANDWIDTH

muthia afifi, Yulindon Yulindon, Uzma Septima

Abstract


In this research, a 3.5 GHz microstrip antenna was designed for 5G applications using the Complemeter Rhombus Resonator method. This antenna has a substrate dimension of 27 mm x 27 mm with a patch length of 23 mm and a patch width of 19.33 mm. The antenna design uses FR4-Epoxy material with a dielectric constant specification of 4.4, a substrate thickness of 1.6 mm, and a copper thickness of 0.035mm. 5G applications require antennas with high performance where this technology is expected to be able to increase data rates and network capacity, which is very capable. Based on the simulation results of microstrip antennas with the Complementary Rhombus Resonator method working at a frequency of 3.5 GHz with a return loss of 26.89 dB. Resulting in the improvement of the antenna bandwidth parameter to 249 MHz, where the bandwidth increases by 20% from the initial design. The initial design has a bandwidth of 208 MHz. This antenna works on the n78 frequency band, where this frequency band has a range of 3300-3800 MHz.



Keywords


Antena Mikostrip, 5G, Complementary Rhombus Resonator, Bandwidth

References


H. Yulianto, M. Haryanti, and S. T. Mt, “Perbaikan Dan Peningkatan Coverage Jaringan 4G LTE.”

H. U. Mustakim, “Tantangan Implementasi 5G di Indonesia.”

T. Trikolas, A. Sungkowo, R. R. Al Hakim, and A. Jaenul, “Kelebihan, Kekurangan, Peluang Teknologi 5G di Indonesia,” INSOLOGI: Jurnal Sains dan Teknologi, vol. 1, no. 1, pp. 43–49, Feb. 2022, doi: 10.55123/insologi.v1i1.145.

Garg R and P. Bhartia, Microstrip Antenna Design Handbook. Artech House, 2001.

C. A. Balanis, Antenna Theory Analysis and Design . 2005.

D. PARAGYA and H. SISWONO, “3.5 GHz Rectangular Patch Microstrip Antenna with Defected Ground Structure for 5G,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 8, no. 1, p. 31, Jan. 2020, doi: 10.26760/elkomika.v8i1.31.

Y. K. Gultom, S. Alam, and I. Surjati, “Microstip Antenna Reflection Coefficient with X Slot Addition Method for 5G Connection,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 5, no. 2, pp. 532–544, Jan. 2022, doi: 10.31289/jite.v5i2.5944.

Y. G. Adhiyoga, T. N. Arifin, S. Ilman, E. Wahyuningsih, D. Rusdiyanto, and A. Mahendra, “Highly Independent 5G Multiband Antenna using Circular Patch Structure,” Buletin Pos dan Telekomunikasi, vol. 21, no. 2, pp. 32–41, Dec. 2023, doi: 10.17933/bpostel.v21i2.364.

J. Jeevitha, G. Shine Let, H. V. Du John, and B. C. Pratap, “A Compact Hook-Shaped 3.5 GHz Microstrip Antenna for 5G Applications,” Przeglad Elektrotechniczny, vol. 1, no. 5, pp. 90–92, 2023, doi: 10.15199/48.2023.05.16.

M. Vinoth and R. Vallikannu, “A compact triple slotted Rectangular Microstrip Patch Antenna with Metamaterial ground for Sub-6 GHz/5G communication,” in Proceedings - 2020 5th International Conference on Research in Computational Intelligence and Communication Networks, ICRCICN 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 120–124. doi: 10.1109/ICRCICN50933.2020.9296184.

L. Tao et al., “Bandwidth Enhancement of Microstrip Patch Antenna Using Complementary Rhombus Resonator,” Wirel Commun Mob Comput, vol. 2018, 2018, doi: 10.1155/2018/6352181.




DOI: http://dx.doi.org/10.30630/jipr.19.2.345

Refbacks

  • There are currently no refbacks.