EVALUASI LENDUTAN BALOK BETON BERTULANG DENGAN PENDEKATAN MATEMATIS: PENERAPAN TEORI EULER–BERNOULLI TERHADAP BATAS KEMAMPUAN LAYAN

Sherly Permata

Abstract


Accurate prediction of beam deflection is crucial in civil engineering structural design, ensuring both safety and functionality. This study investigates how the physical and material properties of a beam relate to the maximum deflection under various loading conditions. We used an analytical approach, applying classic deflection equations derived from Euler-Bernoulli beam theory, which assumes linear elasticity and small deformations. Our case study features a simply supported beam with a 4000 mm span. It's made of concrete with a 30 MPa compressive strength and reinforced with steel having a 390 MPa yield strength. The analysis includes common loading scenarios like concentrated and uniformly distributed loads to evaluate their impact on deflection. The calculations show a maximum deflection of 18.78 mm, which exceeds the allowable limit of 14.17 mm set by SNI 2847:2019. This study demonstrates that mathematical models reliably estimate structural behavior and are effective for design decision-making. These findings highlight the importance of analytical proficiency in structural engineering, especially during initial design and assessment phases. Integrating theoretical models with practical data improves the accuracy of structural analysis, contributing to safer and more efficient construction practices.


Keywords


Beam deflection, Mathematical modeling, Euler-Bernoulli theory, Analytical method, Structural mechanics

References


K. J. Priyanto, “Kajian Kekuatan pada Struktur Balok Grid Persegi,” 2016.

M. K. Zakaria, A. A. Soeparlan, and Mahfud, “Analisa Pengaruh Perubahan Letak Tulangan terhadap Lendutan Seketika dan Jangka Panjang pada Pelat Satu Arah Lantai Dua,” 2019.

Badan Standardisasi Nasional, “Persyaratan Beton Struktural untuk Bangunan Gedung,” Sni 2847-2019, no. 8, p. 720, 2019.

S. 1727-2020, “Penetapan Standar Nasional Indonesia 1727 : 2020 Beban Desain Minimum dan Kriteria Terkait Untuk Bangunan Gedung dan Struktur,” Badan Standarisasi Nas. 17272020, no. 8, pp. 1–336, 2020.

I. Indriyani, N. Nindyawati, and M. Sulton, “Analisis Momen-Lendutan Pada Balok Induk Dengan Variasi Penempatan Balok Anak Beton Bertulang,” J. Inov. Teknol. dan Edukasi Tek., vol. 4, no. 4, p. 2, 2024, doi: 10.17977/um068.v4.i4.2024.2.

I. Units, 318-19 Building Code Requirements for Structural Concrete and Commentary. 2019. doi: 10.14359/51716937.

S. Prayitno, E. Rismunarsi, and K. Wirastuti, “Pengaruh Panjang Sambungan Lewatan Tulangan Baja Polos Sepanjang 300 mm, 325 mm, dan 350 mm Pada Balok Beton Bertulang dengan Mutu Normal Terhadap Kuat Lentur Maksimum,” e-Journal MATRIKS Tek. SIPIL, no. September, pp. 799–805, 2016.

D. Wiyono and W. Trisina, “Analisis Lendutan Seketika Dan Lendutan Jangka Panjang Pada Struktur Balok,” J. Tek. Sipil Maranatha, vol. 9, no. 1, pp. 20–37, 2013.

Tri Handayani and Yudi Irawadi, “Analisis lendutan balok beton secara eksperimental dan perhitungan metode elemen hingga (MEH) dengan aplikasi SNI 2847 : 2013,” Maj. Ilm. Pengkaj. Ind., vol. 12, no. 3, pp. 127–134, 2018, doi: 10.29122/mipi.v12i3.3073.

A. Prihatiningsih and F. Itang, “Analisis Perhitungan Putaran Sudut dan Lendutan Menggunakan Metode Analitik dan Numerik,” vol. 2507, no. February, pp. 1–9, 2020.

M. F. Hidayattulloh, P. Priyono, and M. Muhtar, “Studi Pengaruh Lendutan Terhadap Beton Ringan Yang Tetap Terjaga Berat Penampang,” J. Smart Teknol., vol. 5, no. 1, pp. 136–143, 2023.

O. A. Pala’biran, R. S. Windah, and R. Pandaleke, “Perhitungan Lendutan Balok Taper Kantlever Dengan Menggunakan SAP2000,” J. Sipil Statik, vol. 7, no. 8, pp. 1039–1048, 2019.

P. Sangadji, M. Amir Sultan, E. Riaky Ahadian, and J. I. Jusuf Abdulrahman Kampus Gambesi Kota Ternate Selatan, “CLAPEYRON :JurnalIlmiah Teknik Sipil 2(1): 27-33,” vol. 2, no. 1, pp. 27–33, 2019.

N. A. Lie and V. M. Alo, “Analisis Perbandingan Nilai Lendutan Pelat Lantai Beton Bertulang Menggunakan Analisa Struktur Berdasarkan SNI 2847:2019 dan Abaqus Cae,” G-Smart, vol. 8, no. 1, pp. 28–38, 2024, doi: 10.24167/gsmart.v8i1.11589.




DOI: http://dx.doi.org/10.30630/jipr.20.2.392

Refbacks

  • There are currently no refbacks.