Kestabilan Model Epidemi Seir dengan Matriks Hurwitz

Roni Tri Putra, Sukatik - -, Sri Nita -

Abstract


In this paper, it will be studied local stability of equilibrium points of  a SEIR epidemic model with infectious force in latent, infected and immune period. From the model it will be found investigated the existence and its stability of points its equilibrium by Hurwitz matrices. The local stability of equilibrium points is depending on the value of the basic reproduction number  If   the disease free equilibrium is local asymptotically stable.


Keywords


stability, equilibrium points, Hurwitz matrices

Full Text:

PDF

References


Anton H, dan Rorres,C.,2004. Aljabar Linear Elementer Versi Aplikasi, Edisi Kedelapan, alih bahasa oleh Indriasari,R dan Harmaen,I., Erlangga, Jakarta.

Arrowsmith, D.R. dan Place, C.M., 1992, Dynamical System Differential Equation, Maps and Chaotic Behaviour, Chapman & Hall Mathematic, London.

Capazzo, V., Mathematical Structures of Epidemic Systems, Springer-Verlag, Heidelberg, 2008.

Gantmacher, F.R., 1959, The Theory of Matrices, Chelsea Publishing Company, New York

Hanh, Wolfgang, 1967, Stability of Motion, Springer – Verlag, New York.

Hirsch, M.W., dan Smith, Monotone Dynamical Systems, University of California, Berkeley, 2004.

Luenberger, G.D., 1979, Introduction to Dynamic System Theory, Models & Aplication, John Wiley & Sons, New York.

Olsder, G.J., 1994, Mathematical System Theory, Delftse Uitgevers Maatschappij, Netherlands.

Perko L., 1991, Differential Equations and Dynamical Systems, Springer-Verlag, New York.

Verhultz, Ferdinand, 1990, Nonlinear Differential Equations and Dynamical Systems, Springer–Verlag,Berlin.

Wiggins S, 1990, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer–Verlag, New York.




DOI: http://dx.doi.org/10.30630/jipr.11.2.76

Refbacks

  • There are currently no refbacks.